QMM 510 Fall 2014

Stats Analysis for Managers

Detailed Syllabus

Updated Nov 18, 2013

Prof. Doane

doane@oakland.edu

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

 

 

Week 1

Sep 1-5

 

·         Getting started: ML 1.1

o   self-introductions

o   course format, syllabus, projects

o   goals: short run vs long run

·         Resources available: ML 1.2

o   textbook, e-book

o   OLC (http://www.mhhe.com/doane4e)

o   Connect (http://connect.mcgraw-hill.com/class/qmm510fall2014)

o   Moodle (https://moodle.oakland.edu/)

o   MegaStat (http://www.mhhe.com/megastat)

o   LearningStats (http://www.mhhe.com/doane4e)

o   Doane (http://www.sba.oakland.edu/faculty/doane)

·         Challenges for MBAs: ML 1.3

o   big data, powerful tools

o   ethical guidelines

o   the ideal statistician

o   when to hire a consultant

o   critical thinking

·         Collecting data: ML 1.4

o   data types and measurement

o   random sampling (4 methods)

o   nonrandom sampling (3 methods)

o   randomizing a data column in Excel

o   sources of error, survey types

o   response scales (e.g.,Likert)

·         Describing data visually: ML 1.5

o   center, variability, shape

o   stem-and-leaf, dot plots, histograms

o   frequency polygon, ogive (MegaStat)

o   examples: birth weight, CEO salaries

o   scatter plots (Excel, MegaStat)

·         Assignments: ML 1.6

o   Connect C-1 (covers chapters 2–3)

o   Project P-1 (data, tasks, questions)

None

 

 

 

 

 

 

 

 

 

 

 

 

 

Ch 1 (read all but only for general information)

 

 

 

 

Ch 2 (read all, focusing on data types and random sampling)

 

 

 

Ch 3 (read all, but focus on section 3.2 on frequency distributions and histograms)

 

 


 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 2

Sep 8-12

 

·         Center and variability: ML 2.1

o   center (mean, median, mode, etc)

o   variability (variance, std dev, etc)

o   Excel functions (Appendix J)

o   example: birth weight

·         Standardized data: ML 2.2

o   sorting, standardizing, z-scores

o   normal distribution as a benchmark

o   Empirical Rule (MegaStat)

o   outliers and unusual observations

o   Excel functions (Appendix J)

o   examples: birth weight, voting

o   using MegaStat and Excel

·         Quantiles: ML 2.3

o   percentiles, quartiles, boxplots

o   fences, another view of outliers

o   examples: city MPG, birth weight

·         Correlation, grouped data, shape: ML 2.4

o   scatter plots

o   correlation coefficient

o   covariance – population, sample

o   mean from grouped mean

o   skewness, kurtosis (Excel)

·         Assignments: ML 2.5

o   Connect C-2 (covers chapter 4)

o   Project P-1 (data, tasks, questions)

C-1

covering chapters 2-3 (due at 11:59 pm on Monday Sep 8)

Ch 4 sections 4.1 thru 4.3)

 

 

 

Ch 4 (section 4.4)

 

 

 

 

 

 

 

Ch 4 (section4.5)

 

 

 

 

Ch 4 (sections 4.6-4.8)

 

 

 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 3 Sep 15-19

 

·         Time series trends: ML 3.1

o   time patterns (visual)

o   trend fitting (3 models)

·         Trend forecasting: ML 3.2

o   assessing fit (4 criteria)

o   trend forecasting

o   example: Amazon sales

·         Forecasts with seasonality: ML 3.3

o   seasonal factors

o   seasonally adjusted forecasts

o   MegaStat seasonal

o   example: Amazon sales

·         Moving averages: ML 3.4

o   moving averages (if no trend)

o   exponential smoothing (brief)

·         Assignments: ML 3.5

o   Project P-2 (data, tasks, questions)

C-2

covering chapter 4

(due at 11:59 pm on Monday Sep 15)

Ch 14 (sections 14.1 and 14.2)

 

Ch 14 (section 14.3)

 


Ch 14 (section 14.6)

 

 

 

 

Ch 14 (section 14.4)

 


 

 

Week 4 Sep 22-26

 

·         Probability: ML 4.1

o   definitions of probability

o   independent events

o   contingency tables

o   counting (review as needed)

·         Discrete Probability Distributions: ML 4.2

o   what is a probability distribution?

o   expected value: E(X) and V(X)

o   definitions of pdf and cdf

o   uniform and Excel’s =RANDBETWEEN

·         Binomial distribution: ML 4.3

o   Bernoulli events (X = 0, 1)

o   two parameters (n, π)

o   pmf vs cdf (formulas, Excel)

o   Excel’s =BINOM.DIST

o   Excel’s =BINOM.INV

o   recognizing a binomial

·         Poisson distribution: ML 4.4

o   one parameter (λ)

o   pmf vs cdf (formulas, Excel)

o   Excel’s =POISSON.DIST

o   recognizing a Poisson

·         Other Discrete Distributions: ML 4.5

o   hypergeometric (parameters N, n, s)

o   geometric (parameter π)

P-1

covering chapters 3-4

(due at 11:59 pm

 on Mon Sep 22)

 

Ch 5 (omit section 5.7)

 

 

 

Ch 6 (sections 6.1 and 6.2)

 

 

 

Ch 6 (sections 6.3 and 6.4)

 

 

 

 

 

 

Ch 6 (section 6.5)

 


 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 5 Sep 29-Oct 3

 

·         Normal distribution: ML 5.1

o   pdf vs cdf (formulas, Excel)

o   calculating a standardized z score

o   area for given z using Appendix C

o   area for given x or z using Excel functions

§  =NORM.DIST(x, μ, σ, 1)

§  =NORM.S.DIST(z,1)

·         Inverse normal distribution: ML 5.2

o   z for given area using Appendix C

o   x or z for given area α using Excel function

§  =NORM.INV(α, μ, σ)

§  =NORM.S.INV(α)

o   z values for common areas (.10, .05, etc)

o   normal approximations – why bother?

·         Exponential distribution: ML 5.3

o   pdf and cdf (formulas, Excel)

o   uses in waiting time or queueing

o   example of prob for given wait

o   example of inverse (wait for given prob)

o   example for given MTBF

·         Other continuous distributions: ML 5.4

o   triangular distribution

§  pdf and cdf

§  mean and standard deviation

§  uses in “what if” simulation

o   uniform distribution

§  mean and standard deviation

§   Excel’s =RAND()

C-3

covering chapters 5-6

(due at 11:59 pm on Monday Sep 29)

Ch 7 (sections 7.1, 7.3, 7.4, and 7.5)

 

 

 

 

 

 

 

 

 

 

 

 

Ch 7 (section 7.6)

 

 

 

 

 

Ch 7 (sections 7.2 ans 7.7)

 

 


 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 6 Oct 6-10

 

·         Sampling Distributions: ML 6.1

o   sample mean is a random variable (r.v.)

o   properties of estimators

o   sampled items vary but mean varies less

o   mean → normal for small n if sym pop

o   variance of mean → 0 as n

·         CI for µ with σ known: ML 6.2

o   standard error of the mean is σ/n1/2

o   which confidence level (.90, .95, .99)?

o   use z if you know σ (or very large n)

o   z for given 1–α (Appx C or Excel)

·         CI for µ for σ unknown: ML 6.3

o   use t if unknown σ (typical situation)

o   t for given 1–α (Appx D or Excel)

o   quick rule for 95% CI

o   conservative just to use t

o   CI from MegaStat (or Minitab)

·         Conf interval for a variance: ML 6.4

o   requires a chi-square table (Appx D)

o   less common (use Minitab or MegaStat)

C-4

covering chapter 7

(due at 11:59 pm on Monday Oct 6)

Ch 8 (sections 8.1 thru 8.3)

 

 

 

Chapter 8 (section 8.4)

 

 

 

 

Chapter 8 (section 8.5)

 

 

 

 

 

Ch 8 (section 8.10)

 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 7 Oct 13-17

 

·         Conf interval for p: ML 7.1

o   sample proportion p = x/n is a r.v.

o   the CLT applies to a proportion p

o   standard error of p is [p(1–p)/n]1/2

o   use z for CI if n is “large”

o   10 “successes” and 10 “failures”

o   use binomial for CI if n is small (Minitab)

o   poll margin of error assumes π = .50

o   effect of finite populations

·         Sample size for p and µ: ML 7.2

o   it is conservative to assume π = .50

o   but sample may be larger than necessary

o   sample size for µ requires assumed σ

o   but there’s no conservative choice for σ

o   you really need a preliminary sample

·         Hypothesis tests: ML 7.3

o   type I error, type II error, and power

o   tradeoff between type I and II error

P-2

covering chapter 14

(due at 11:59 pm

 on Mon Oct 13)

 

 

Ch 8 (sections 8.6 and 8.7)

 

 

 

 

 

 

 

Ch 8 (section 8.10)

 

 

Ch 8 (8.8 and 8.9)

 

 

 

Ch 9 (section 9.1)

 


 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 8

Oct 20-24

 

 

·         Tests for µ = µ0 (known σ): ML 8.1

o   formulating the null hypothesis H0

o   sign of H1 indicates tail of test (>, ≠, <)

o   level of significance (.10, .05, .01)

o   use z if you know σ (or very large n)

o   critical values for z (Appx C or Excel)

o   we encounter p-values often

o   the p-value always refers to H0

o   similar interpretation for all tests

o   why are two-tailed tests common?

·         Tests for µ = µ0 unknown σ: ML 8.2

o   use t if unknown σ (typical situation)

o   critical values for t (Appx D or Excel)

o   conservative just to use t

o   using MegaStat (or Minitab)

·         One-sample z-test for π = π0: ML 8.3

o   use z as long as n is large enough

o   10 “successes” and 10 “failures”

o   binomial if n is small (Minitab)

o   using MegaStat (or Minitab)

C-5

covering chapter 8 (due at 11:59 pm on Monday Oct 20

Ch 9 (sections 9.2 and 9.3)

 

 

 

Ch 9 (section 9.4)

 

 

 

 

 

Ch 9 (pp. 352-353 are very important)

 

 

 

 

Ch 9 (section 9.5)

 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 9 Oct 27-31

·         Independent sample t-tests: ML 9.1

o   Case 1: z-test for µ1 - µ2 = 0 (known population variances, rarely used)

o   Case 2: t-test for µ1 - µ2 = 0 (unknown variances, pooled variance estimate)

o   Case 3: t-test for µ1 - µ2 = 0 (unknown variances, separate s variance estimates)

o   p-values and Excel functions

o   example using Excel t-tests

o   example using MegaStat

·         Paired sample t test: ML 9.2

o   really a one-sample t-test for µd = 0

o   can you recognize paired data?

·         z-test for π1 - π2 = 0: ML 9.3

o   summarized data

o   when is normality assumption safe?

o   advantages of MegaStat (or Minitab)

o   example using MegaStat

·         F test for σ12 = σ22 : ML 9.4

o   F test: Excel vs MegaStat

o   Quick rule for variances

None (but try to get started on C-6)

Ch 10 (omit 10.3 and 10.6)


 

 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 10 Nov 3-7

 

·         Chi-Square Tests for Independence: ML 10.1

o   Chi-square distribution

o   Contingency tables revisited

o   Hypotheses and decision rule

o   Excel’s =CHISQ.DIST.RT(α,d.f.)

o   MegaStat’s chi-square test

o   Cochran’s Rule (ej ≥ 5)

o   Example: web survey

·         Chi-Square Goodness-of-Fit tests: ML 10.2

o   Degrees of freedom d.f. = km

o   Chi-square GOF test for normality

o   Why Method 3 is preferred

o   Disadvantages of chi-square GOF

·         ECDF Tests for GOF: ML 10.3

o   Kolmogorov-Smirnov test

o   Anderson-Darling test

o   Probability plots

o   Examples: Minitab and MegaStat

o   Advantages of ECDF tests

C-6 coveringchapters 9 and10 (due at 11:59 pm on Monday Nov 3

Ch 15 (sections 15.1-15.2)

 

 

 

 

 

 

Ch 15 (section 15.5)

 

 

 

Ch 15 (section 15.6)


 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 11 Nov 10-14

 

·         Correlation analysis:- ML 11.1

o   significance tests for r

o   uses of correlation analysis

·         Simple regression: ML 11.2

o   OLS method, assumptions

o   interpreting a fitted regression

o   example (CarSpecs)

o   R2 statistic, ANOVA, standard error(se)

o   tests for significance (t-test, F-test)

o   unusual residuals, outliers

o   high leverage observations

·         Tests for violations: ML 11.3

o   non-normality (histogram, PP)

o   autocorrelation (residual runs plot, DW)

o   heteroscedasticity (residual plots)

o   consequences of violations

o   transformations that may help

o   but are transformations worth it?

·         Project P-3 (discuss): ML 11.4

o   Why multiple predictors?

o   How many predictors: Evans’ Rule

o   Project P-3 (preview, data, tasks)

o   using the state database

o   work with partners?

o   start with choice of Y

o   choose your Y to be explained

o   choose predictors X1, X2, …

o   ask instructor about proposed model

o   post questions on Moodle (for peers or instructor)

C-7 coveringchapter 15 (due at 11:59 pm on Monday Nov 10

Ch 12 (section 12.1)

 

Ch 12 (sections 12.2 thru 12.6)

 

 

 

 

Ch 12 (section 12.9)

 

Ch 12 (sections 12.8 and 12.10)

 


 

Week 12

Nov 17-21

 

·         Multiple regression: ML 12.1

o   model building, predictor choice

o   how many predictors (Evans)

o   tests for significance (t-tests, F-test)

o   quick rules for t and F, conf. intervals

o   should you omit poor predictors?

o   assessing fit- R2, R2adj, std error (se)

o   Occam’s Razor, role of sample size

·         Unusual observations: ML 12.2

o   unusual residuals

o   high leverage observations

o   similar to simple regression

·         Categorical predictors: ML 12.3

o   using binary predictors (c–1)

o   just like any other predictor, but ...

o   the residual plots look weird

·         Other Regression Topics: ML 12.4

o   Outliers? Ill-Conditioned Data?

o   Significance in Large Samples?

o   Model Specification Errors?

o   Binary Response? Stepwise Regression?

o   Project P-3 (checkpoints)

§  have you estimated your model?

§  variable scaling questions

§  post questions on Moodle forum

C-8

Ch 12

(due at 12:59 pm on Monday Nov 17)

Ch 13 (sections 13.1 thru 13.3)

 

 

 

 

 

 

Ch 13 (section 13.8)

 

 

 

Ch 13 (section 13.5)


 

Week

Topics and Mini-Lectures (Moodle and Connect)

Due

Reading

Week 13

Nov 24-28

 

·         Multicollinearity (MC): ML 13.1

o   consequences of MC

o   correlation matrix (for k predictors only)

o   collinearity vs multicollinearity

o   variance inflation factors (VIFs)

o   fit: compare se with mean of Y

o   fit: plot Yactual against Yfitted

o   is some explained SSR better than none?

o   tiny competitive advantage in business may be critical (e.g., data mining)

·         Tests for violations: ML 13.2

o   non-normality (histogram, PP)

o   autocorrelation (residual runs plot, DW)

o   heteroscedasticity (residual plots)

o   mostly the same as simple regression

·         Assignments: ML 13.3

o   Project P-3 (last-minute instructions)

o   post questions on Moodle

o   e-mail questions to instructor

None (but get started on project P-3)

Ch 13 (section 13.7)

 

 

 

 

 

 

 

 

Ch 13 (sections 13.8 and 13.9)

Week 14

Dec 1-5

 

·         Wrap-Up: No mini-lectures posted

o   Submit project P-3 (note unusual due date)

o   Last-minute e-mails to instructor

P-3

(due at 5:00 on Wed Dec 3)

None

 

 

 

Format

Projects

Doane’s Home Page

Note: Mini-lecture slides,  video demonstrations, case srudies, and data files for demonstrations and projects  are posted on Moodle. You can download additional free learning resources from the McGraw-Hill Online Learning Center for this textbook, or from the premium content (e.g., e-book) on the Connect Plus web site.